2024/01/10 22:23

1/9

Payment protocol PaymentsAPI v1.0.4

Document change history:

Payment protocol PaymentsAPI v1.0.4

Version |Date Author Comment

1.0.0 02.03.2021 |Menkov. V. |Document creation

1.0.1 15.03.2021 |Menkov. V. |Added section “Certificate Conversion”

1.0.2 19.04.2021 |Menkov. V. |Added description of Payment/Check method
1.0.3 19.04.2021 |Menkov. V. |Added description of Balance method

1.04 15.10.2021 |Menkov. V. |Added Pending status

General description of the protocol

Technology: REST HTTP API.
Data format: JSON.

List of methods:

® Init - payment initialization

® Confirm - confirmation of payment

Authentication:

® Client certificate

®* HMAC signature

Authentication
Client certificate

Each request must contain information about the client certificate. An example of using a client certificate in the
code of a test utility:

var client = new RestClient(url);
if (File.Exists(clientCertPath))

{
X509Certificate2 clientCert = new X5@9Certificate2(clientCertPath,

certPass);
client.ClientCertificates = new X509CertificateCollection() {
clientCert };

}

where clientCertPath - path to certeficate, certPass - pswd of certeficate.

Wiki - https://wiki.runpay.com/

Last update: 2024/01/10 10:17 public:paymentsapi_enghttps://wiki.runpay.com/doku.php?id=public:paymentsapi_eng

Signature HMAC

CLIENT = Client ID,

BODY = request body (JSON),

TS = unix timestamp (UTC+0) in milliseconds (calculated each time before
request), API-SECRET = client's private key,

then the message to sign would be: MESSAGE = CLIENT + TS + BODY.

We calculate the signature as HMAC-SHA256 from MESSAGE using a private key API-SECRET and then convert the
byte array to string HEX - format:

SIGN = HEX (HMAC-SHA256(MESSAGE, API-SECRET)).

When sending a request, fill in the following HTTP headers:

RP-CLIENT = CLIENT
RP-TS = TS
RP-SIGN = SIGN

MNpumep:

CLIENT = N1Linll

BODY =

"clientTranId": "130",
"account": "282380",
"amount": 54.80,
"commissionAmount": 1.50,
"currency": "LYD",
"operatorCode": 5293

TS =1614696692368
API-SECRET = 12345

then the message to be signed will be:
MESSAGE = N1Linl11614696692368

"clientTranId": "130",
"account": "282380",
"amount": 54.80,
"commissionAmount": 1.50,
"currency": "LYD",
"operatorCode": 5293

https://wiki.runpay.com/ Printed on 2023/01/26 22:23

2024/01/10 22:23 3/9 Payment protocol PaymentsAPI v1.0.4
We calculate the signature as HMAC-SHA256 from MESSAGE using a private key API-SECRET and then convert
the byte array to string HEX - format:

SIGN = HEX (HMAC-SHA256(MESSAGE, API-SECRET)) =
108b03d50319b9422df3a121991c474fa441df41f94c62683373099d473275b0.

When sending a request, fill in the following HTTP headers:
RP-CLIENT N1Linl1l

RP-TS 1614696692368
RP-SIGN 108b03d5031909422d£3a121991c474£a441d£41£94c62683373099d473275b0

Sample code from test utility:

Wiki - https://wiki.runpay.com/

Last update: 2024/01/10 10:17 public:paymentsapi_enghttps://wiki.runpay.com/doku.php?id=public:paymentsapi_eng

var body = edtRequest.Text;
var request = new RestRequest(Method.POST).AddJsonBody(body);

var timestamp = ToTimeStamplLong(DateTime.UtcNow);
var teminalid edtCLIENT.Text;

var strToSign $"{teminalid}{timestamp}{body}";
var secret = edtSECRET.Text;

string sign = string.Empty;
var keyByte = Encoding.UTF8.GetBytes(secret);
byte[] inputBytes = Encoding.UTF8.GetBytes(strToSign);
using (var hmac = new HMACSHA256(keyByte))
{
byte[] hashValue = hmac.ComputeHash(inputBytes);
sign = ByteArrayToHEXString(hashVvalue);

request.AddHeader("RP-CLIENT", teminalid);
request.AddHeader("RP-TS", timestamp.ToString());
request.AddHeader("RP-SIGN", sign);

public static long ToTimeStampLong(DateTime dt)
{

long timestamp = (Int64)(dt.Subtract(new DateTime(
))).TotalMilliseconds;
return timestamp;

private static string ByteArrayToHEXString(byte[] ba)
{

return BitConverter.ToString(ba).Replace("-", "").ToLower();

Service methods

[Payment/Init] Payment initialization method

Request type: POST.

This is the first request in a billing session. At this stage, various checks are carried out for the correctness of the
payment data and for the possibility of performing this operation.

Request example:

https://wiki.runpay.com/ Printed on 2023/01/26 22:23

2024/01/10 22:23 Payment protocol PaymentsAPI v1.0.4

{
"clientTranId": "1618817505702"

"account": "218941112222",

"amount": 5

"commissionAmount":

"currency"”: "LYD",

"operatorCode":

"operatorParams": {
"CheckedIDNP": "2000003147230"

where

clientTranId - transaction number in the client's system (optional),
account - account, amount - amount to pay, commissionAmount - commission
amount, currency - currency, operatorCode - operator code,
operatorParams - incoming operator parameters (each operator has its own
parameters) .

Sample response:

"serverTranlId":
"account": '218941112222",

"amount": 1,

"operatorCode": 5

"operatorParams": {
"MonthLimitIncome": "499997838,00",
"MonthLimitOutgo": "499997844,46",

}}

"status": "InitSuccess",

"errorCode": @,

"errorMessage": "No Error"

Wiki - https://wiki.runpay.com/

serverTranId - transaction identifier (This value then needs to be
substituted in the Confirm request), operatorParams - various operator
parameters status - transaction status (see description of statuses
errorCode - error code (see description of error codes) errorMessage -
error description operatorParams - outgoing operator parameters

[Payment/Confirm] Payment confirmation method

Request type: POST. This method is called after successful initialization to process the payment.

Example request:

"serverTranld": <
"account": "218941112222",
"amount": 5
"commissionAmount":
"currency”: "LYD",
"operatorCode":

where serverTranld - transaction number (comes in response to /Init).

Sample answer:

"serverTranld": 5

"account”: "218941112222",

"amount": 1,

"commissionAmount":

"commissionType": @,

"operatorCode": -

"operatorParams": {
"MonthLimitIncome": "499997838,00",
"MonthLimitOutgo": "499997844,46",

}s

"status": "PaySuccess"”,

"errorCode": O,

"errorMessage": "No Error”

https://wiki.runpay.com/ Printed on 2023/01/26 22:23

2024/01/10 22:23 7/9 Payment protocol PaymentsAPI v1.0.4
[Payment/Check] Payment verification method

Request type: POST. This method is called to clarify the status of the sent payment or check if the operation
ended with an error or the connection was interrupted.

Request example:

{
"clientTranId": "1618817505702",

"serverTranId": "7505702"
}

where

clientTranId - transaction number in the client's system serverTranId -
transaction number in the RunPay system (comes in response to Init/Confirm

Itis enough to fill in one of the parameters. If both parameters are filled, then the priority serverTrandld. The
response is identical to the response to the Init/Confirm methods.

[/Balance] Payment verification method

Request type: GET. This method is used to query the user's balance.

Answer example:

{
"balance": "12300.45"

}

Basic scenario for making a payment

Sending request /Init
From the answer we take serverTranld and substitute in the request /Confirm We send
request /Confirm

Converting the certificate

Some cases instead of pfx the certificate needs a different format such as a pem / key pair. For such purposes,
you need to use the public utility open_ssl, below are examples of the required commands:

1. Making a root certificate: openssl pkcs12 -in NAXBB.pfx -cacerts -nokeys -out ca.pem
2. Making a pem with a client certificate: openssl pkcs12 -in N4XBB.pfx -clcerts -nokeys -out cert.pem
3. Making a pem with a private key: openssl pkcs12 -in N4XBB.pfx -nocerts -out key.pem

Wiki - https://wiki.runpay.com/

Last update: 2024/01/10 10:17 public:paymentsapi_enghttps://wiki.runpay.com/doku.php?id=public:paymentsapi_eng

Test utility

The TestClient utility has been created to test the API. You can use it to send with a signature.

(|

' MainWindow = 0 X

~ l v
https://localhost:5001/Payment /in -
RP-TS: |N1Lin1Y SECRET: 12345 CAUsers\menko\OneDrive\doxymerroi\kdata\TRMT L | 1488

*account”; “282380" 3 4 S
*amount™: 54.80

"commissionAmount”;: 56.50

*currency™: LYD®

“operatorCode™: 5293

)

RP-TS: 1614691359341

RP-SIGN: 783a8¢717e0286b50c03007cf822c2a8aaaca2712e22efa16cc3a200ff0099¢ s

==l
} StatusCode: OK s |

| RequestTime: 3360 11

“chentTranld™: "161469135
"serverTranid™: 5293504233 ‘
“account™; “282380° 12
“amount™ 548
*commissionAmount™: 0
*commissionType™: 0
“operatorCode": 5293
“operatorParams™; | -
*Branch_number”: ** 13
*Name"™: **
"InvoiceSumm”®
)
“status”: "InitSuccess”
"errorCode™: 0
“errorMessage”: "No Error”
)

APl base address

Method

Client code (issued upon registration)

Client password (issued during registration)

Client certificate (issued upon registration)

Password from the certificate (issued during registration)
Request body

The generated timestamp value

PN kAWM

. The generated signature value
10. Query result
11. Leadtime
12. Send request button

https://wiki.runpay.com/ Printed on 2023/01/26 22:23

2024/01/10 22:23 9/9
13. Response body

List of transaction statuses

InitFail - payment initialization error

InitPorcess - transaction validation is in progress
InitSuccess - successful initialization of the payment
PayFail - payment confirmation error

PayProcess - the payment is being processed
PaySuccess - payment completed successfully
PayPending - deferred payment processing

List of error codes

Payment protocol PaymentsAPI v1.0.4

0 |Noerror
1 |Incorrect query parameters
2 |Request log not found
3 |No active store or active business found
4 |Repeat Request ID
c No matching validation request found. Perhaps the wrong status of the transaction, ie. repeat command
6 |Subagent point code is not registered in the database
7 |Certificate expired according to DB
8 |Phone number/account length is too long
9 |No gateway found for online command
10 |Operator blocked or subagent banned
11 |Transaction date too old
12 |Error adding payment to the queue
14 |Certificate verification error
15 |Invalid optional parameter format or missing required parameter
100 |Data not found
101 |Internal Server Error
34 |Prohibited payment currency
114 |Exceeding the limit for the period
From:

https://wiki.runpay.com/ - Wiki

Permanent link:
https://wiki.runpay.com/doku.php?id=public:paymentsapi_gn

Last update: 2022/06/15 10:17

Wiki - https://wiki.runpay.com/

https://wiki.runpay.com/
https://wiki.runpay.com/doku.php?id=public:paymentsapi_eng

